Verification of efficient C arithmetic algorithms with Why3

Raphaël Rieu-Helft

joint work with Guillaume Melquiond and Claude Marché

November 23, 2021
Computer arithmetic, integer representation

Usual integer representation

- Machine word: string of k bits, k depends on the architecture
- Typically $k = 64$ or $k = 32$
- A machine word can represent any integer between 0 and $2^k - 1$
Computer arithmetic, integer representation

Usual integer representation

- Machine word: string of k bits, k depends on the architecture
- Typically $k = 64$ or $k = 32$
- A machine word can represent any integer between 0 and $2^k - 1$

What about larger numbers?

- Required for cryptography, computer algebra systems...
Arbitrary-precision arithmetic

Integer representation

large integer ≡ array of unsigned integers \(a_0 \ldots a_{n-1} \) called limbs

\[
\text{value}(a, n) = \sum_{i=0}^{n-1} a_i \beta^i \quad 0 \leq a_i < \beta \quad \beta = 2^{64}
\]
Arbitrary-precision arithmetic

Integer representation

A large integer is defined as an array of unsigned integers \(a_0 \ldots a_{n-1}\) called **limbs**.

The value of a large integer \((a, n)\) is given by:

\[
\text{value}(a, n) = \sum_{i=0}^{n-1} a_i \beta^i \\
0 \leq a_i < \beta \\
\beta = 2^{64}
\]

The GNU Multiple Precision library (GMP)

- Free software, widely used arbitrary-precision arithmetic library
- State-of-the-art algorithms written in C
Motivation

Decrementing a long integer by 1 (simplified from mpn_decr_u)

```c
#define mpn_decr_1 (x) \
    mp_ptr __x = (x); \ 
    while (*((__x ++))-- == 0) ;
```

- Hard-to-read single-line code from the GMP library
- Can the program crash? (safety)
- Does it compute the right value? (functional correctness)
Motivation

Decrementing a long integer by 1 (simplified from mpn_decr_u)

```c
#define mpn_decr_1(x)  
    mp_ptr __x = (x);  
    while (*((__x++))-- == 0) ;
```

- Hard-to-read single-line code from the GMP library
- Can the program crash? (safety)
- Does it compute the right value? (functional correctness)

How to verify this?
Functional verification in a nutshell
Informal specification (incomplete)

```c
// requires: x valid over some length sz
// requires: value x sz >= 1
// ensures: value x sz = old (value x sz) - 1
#define mpn_decr_1(x) \
    mp_ptr __x = (x); \
    while (*((__x++))-- == 0) ;
```

Next steps:
formalize the specification
check whether the program matches the specification
How to do so efficiently?
Informal specification (incomplete)

// requires: x valid over some length sz
// requires: value x sz >= 1
// ensures: value x sz = old (value x sz) - 1

#define mpn_decr_1(x)\n mp_ptr __x = (x); \n while ((*(__x++))-- == 0) ;

Next steps:
- formalize the specification
- check whether the program matches the specification
Informal specification (incomplete)

```c
// requires: x valid over some length sz
// requires: value x sz >= 1
// ensures: value x sz = old (value x sz) - 1
#define mpn_decr_1(x) \
m_p_ptr __x = (x); \nwhile (*((__x++))-- == 0) ;
```

Next steps:
- formalize the specification
- check whether the program matches the specification

How to do so efficiently?
The Why3 workflow

C library
Verification of efficient C arithmetic algorithms with Why3
The Why3 workflow

- C library
- WhyML library
- Why3
- Verification conditions
- Specification, assertions, invariants
The Why3 workflow

- **C library**
- **WhyML library**
- **Why3**
- **Verification conditions**
- **SMT solvers**

Specification, assertions, invariants
The Why3 workflow

- C library
- WhyML library
- Why3
- Verification conditions
- SMT solvers
- Coq

- Specification, assertions, invariants
The Why3 workflow

- C library
- WhyML library
- Why3
- Verification conditions
- SMT solvers
 - Coq
 - Gappa

Specification, assertions, invariants
The Why3 workflow

- C library
- WhyML library
- Why3
- Verification conditions
- SMT solvers
 - Coq
 - Gappa
- Specification, assertions, invariants
- OK!
The Why3 workflow

- Specification, assertions, invariants
- WhyML library
- Why3
- Verification conditions
- SMT solvers
- Coq
- Gappa
- Verified C library
- C library
Verifying mpn_decr_1

Original macro (simplified from 18-line mpn_decr_u)

```c
#define mpn_decr_1(x) \
   mp_ptr __x = (x); \
   while ((*(__x ++))-- == 0) ;
```

Translation to WhyML

```whyml
let wmpn_decr_1 (x: ptr uint64) (ghost sz: int32): unit
   requires { valid x sz }
   requires { 1 <= value x sz }
   ensures { value x sz = value (old x) sz - 1 }
   =
   let ref lx = 0 in
   let ref xp = incr x 0 in
   while lx = 0 do
      lx <- get xp;
      set xp (sub_mod lx 1);
      xp <- incr xp 1;
   done
```
Verifying `mpn_decr_1`

Original macro (simplified from 18-line `mpn_decr_u`)

```c
#define mpn_decr_1(x) \
    mp_ptr __x = (x); \
    while ((*(__x ++))-- == 0) ;
```

Extraction to C

```c
void wmpn_decr_1(uint64_t *x) {
    uint64_t lx, *xp, res;
    lx = 0;
    xp = x + 0;
    while (lx == 0) {
        lx = *xp;
        res = lx - 1;
        *xp = res;
        xp = xp + 1;
    }
}
```
Overview

- WhyML library
- Specification, assertions, invariants
- Why3
- Verification conditions
- Model of C
- State-of-the-art C library: GMP
- Verified C library: WhyMP
- SMT solvers
 - Coq
 - Gappa

Verification of efficient C arithmetic algorithms with Why3
Plan

1. Introduction
2. Memory model and extraction
3. An algorithm: long division
4. WhyMP
5. Conclusion, perspectives
Memory model: goals and challenges

Goals
- Accurate transcription of C programs in WhyML
- Tractable proofs

Challenges
- No native notion of pointers in WhyML
- Alias handling:
 - Aliased pointers
 - Function arguments that may or may not be aliased
Memory model

```plaintext
type ptr 'a = abstract { mutable data: array 'a; offset: int }

predicate valid (p:ptr 'a) (sz:int) =
  0 ≤ sz ∧ 0 ≤ p.offset ∧ p.offset + sz ≤ p.data.length

val malloc (sz:uint32) : ptr 'a (* malloc(sz * sizeof('a)) *)
  ensures { is_not_null result → valid result sz }
...

val free (p:ptr 'a) : unit (* free(p) *)
...
```
Alias control

aliased C pointers \iff point to the same memory object
aliased WhyML pointers \iff shared value in the data field

```
type ptr 'a = abstract { mutable data: array 'a ; offset: int }

val incr (p:ptr 'a) (ofs:int32): ptr 'a  (* p + ofs *)
  alias { result.data with p.data }
  ensures { result.offset = p.offset + ofs }
  ...

val free (p:ptr 'a): unit
  requires { p.offset = 0 }
  writes { p.data }
  ensures { p.data.length = 0 }
```
Extraction mechanism

Goals

- Straightforward extraction (trusted)
- Performance: no added complexity, no closures or indirections
- Predictable output
- Tradeoff: handle only a small, C-like fragment of WhyML

- ✔ loops, references
- ✔ records
- ✔ machine integers
- ✔ manual memory management
- ✗ polymorphism, abstract types
- ✗ higher order
- ✗ mathematical integers
- ✗ garbage collection
Exceptions and break/return

- Recognize break- and return-like patterns
- Reject other exceptions

```plaintext
exception B

try
  while ... do
    ...
    if (...) then raise B;
  ...
  done
with B → ()
end

exception R of t

let f (...) : t =
  ...
  try
    ...
    raise (R e)
  ...
  with R v → v
end
```
Tuple return values

```ocaml
let f (x:int32) : (int32, int32) = x + 1, x + 2

let g (x:int32) =
  let (y, z) = f x in
  y + z

struct __f_result {
  int32_t __field_0;
  int32_t __field_1;
};

struct __f_result f(int32_t x) {
  struct __f_result result;
  result.__field_0 = x + 1;
  result.__field_1 = x + 2;
  return result;
}

int32_t g(int32_t x) {
  int32_t y, z;
  struct __f_result struct_res;
  struct_res = f(x);
  y = struct_res.__field_0;
  z = struct_res.__field_1;
  return y + z;
}
```
int32_t wmpn_cmp(uint64_t * x, uint64_t * y, int32_t sz)
{
 int32_t i;
 uint64_t lx, ly;
 i = sz;
 while (i >= 1) {
 i = i - 1;
 lx = x[i];
 ly = y[i];
 if (lx != ly) {
 if (lx > ly) {
 return 1;
 } else {
 return -1;
 }
 }
 }
 return 0;
}

let wmpn_cmp (x y: ptr uint64)
 (sz: int32): int32
= let ref i = sz in
 while i ≥ 1 do
 i ← i - 1;
 let lx = x[i] in
 let ly = y[i] in
 if lx ≠ ly then
 if lx > ly
 then return 1
 else return (-1)
 done;
 0
1 Introduction

2 Memory model and extraction

3 An algorithm: long division

4 WhyMP

5 Conclusion, perspectives
Long division: naïve algorithm

One iteration of the main loop

Goal: compute most significant limb of the quotient

\[
\begin{array}{cccccccc}
 & a_0 & a_1 & \ldots & a_{m-3} & a_{m-2} & a_{m-1} \\
\hline
\text{dividend/partial remainder: length } m \\
 d_0 & \ldots & d_{n-1} \\
\text{normalized divisor: length } n \\
\text{quotient: length } m-n
\end{array}
\]
Long division: naïve algorithm

One iteration of the main loop

Goal: compute most significant limb of the quotient

1. Estimate the most significant quotient limb (with a short division)

\[
\hat{q} = \frac{a_{m-2}a_{m-1}}{d_{n-1}}
\]

- \(a_0, a_1, \ldots, a_{m-3}, a_{m-2}, a_{m-1}\) dividend/partial remainder: length \(m\)
- \(d_0, \ldots, d_{n-1}\) normalized divisor: length \(n\)
- \(?, ?, \ldots, ?, ?\) quotient: length \(m-n\)
Long division: naïve algorithm

One iteration of the main loop

Goal: compute most significant limb of the quotient

1. Estimate the most significant quotient limb (with a short division)
2. Multiply by the divisor, subtract the product from the dividend

\[
\begin{array}{cccccc}
 a_0 & a_1 & \ldots & a_{m-3} & a_{m-2} & a_{m-1} \\
\end{array}
\]

dividend/partial remainder: length \(m \)

\[
\begin{array}{cccc}
 d_0 & \ldots & d_{n-1} \\
\end{array}
\]

normalized divisor: length \(n \)

\[
\begin{array}{cccccc}
 ? & ? & \ldots & ? & \hat{q} \\
\end{array}
\]

quotient: length \(m-n \)

\[
a_0'a_1'\ldots a'_{m-2} = \overline{a} - \hat{q} \times \overline{d}
\]
Long division: naïve algorithm

One iteration of the main loop

Goal: compute most significant limb of the quotient

1. Estimate the most significant quotient limb (with a short division)
2. Multiply by the divisor, subtract the product from the dividend

\[\overline{a_0 a_1 \ldots a_{m-2}} = \bar{a} - \hat{q} \times \bar{d} \]

if \(\hat{q} \) is right \(a'_{m-1} = 0 \)
Long division: naïve algorithm

One iteration of the main loop

Goal: compute most significant limb of the quotient

1. Estimate the most significant quotient limb (with a short division)
2. Multiply by the divisor, subtract the product from the dividend
3. If the quotient is too large, adjust it

\[
\begin{align*}
ad'_0 & \quad a'_1 & \quad \ldots & \quad a'_{m-3} & \quad a'_{m-2} & \quad a_{m-1} \\
d_0 & \quad \ldots & \quad d_{n-1} \\
? & \quad ? & \quad \ldots & \quad ? & \quad \hat{q} \\
\end{align*}
\]

\begin{align*}
& \text{dividend/partial remainder: length } m \\
& \text{normalized divisor: length } n \\
& \text{quotient: length } m - n \\
\hat{q} & \leftarrow \hat{q} - 1 \\
\overline{a}' & \leftarrow \overline{a}' + \overline{d} \\
\end{align*}

until it works...
Long division: naïve algorithm

One iteration of the main loop

Goal: compute most significant limb of the quotient

1. Estimate the most significant quotient limb (with a short division)
2. Multiply by the divisor, subtract the product from the dividend
3. If the quotient is too large, adjust it

\[
\begin{align*}
\left[\begin{array}{cccc}
\ a'_0 & a'_1 & \ldots & a'_{m-3} & a'_{m-2} & a_{m-1} \\
\end{array} \right] & \\
\text{dividend/partial remainder: length } m & \\
\left[\begin{array}{cccc}
\ d_0 & \ldots & d_{n-1} \\
\end{array} \right] & \\
\text{normalized divisor: length } n & \\
\left[\begin{array}{cccc}
\ ? & ? & \ldots & ? & \hat{q} \\
\end{array} \right] & \\
\text{quotient: length } m-n & \\
\end{align*}
\]
Optimization: 3-by-2 division \((\text{M"oller & Granlund 2011})\)

Goal: better estimate of the quotient, simplify adjustment step

\[
\begin{array}{cccccccc}
 a_0 & a_1 & \ldots & a_{m-3} & a_{m-2} & a_{m-1} \\
\hline
\end{array}
\]

dividend/partial remainder: length \(m\)

\[
\begin{array}{cccccccc}
 d_0 & \ldots & d_{n-2} & d_{n-1} \\
\hline
\end{array}
\]

normalized divisor: length \(n\)

\[
\hat{q} = \frac{a_{m-3}a_{m-2}a_{m-1}}{d_{n-2}d_{n-1}}
\]

\[
r_0r_1 = a_{m-3}a_{m-2}a_{m-1} - \hat{q} \cdot d_{n-2}d_{n-1}
\]

Adjustment: at most one step, and only if \(r_1 = 0 \Rightarrow \text{very unlikely}\)

same divisor at each iteration \(\Rightarrow\) 3-by-2 division uses a precomputed pseudo-inverse and no division primitive
Implementation trick: long subtraction

\[
\begin{array}{cccccc}
 a_0 & a_1 & \ldots & a_{m-3} & a_{m-2} & a_{m-1} \\
\end{array}
\]
\[
\text{dividend/partial remainder: length } m
\]
\[
\begin{array}{cccc}
 d_0 & \ldots & d_{n-2} & d_{n-1} \\
\end{array}
\]
\[
\text{normalized divisor: length } n
\]
\[
\hat{q} = \frac{a_{m-3}a_{m-2}a_{m-1}}{d_{n-2}d_{n-1}}
\]
\[
r_0r_1 = a_{m-3}a_{m-2}a_{m-1} - \hat{q} \cdot d_{n-2}d_{n-1}
\]
\[
a_0'a_1' \ldots a_{m-2}' = a_0 \ldots a_{m-3}a_{m-2}a_{m-1} - \beta^{m-n-1} \hat{q} \times d_0 \ldots d_{n-2}d_{n-1}
\]
\[
\text{but we already have } a_{m-3}a_{m-2}a_{m-1} - \hat{q} \times d_{n-2}d_{n-1} = r_0r_1
\]
\[
\Rightarrow \text{subtraction over length } n-2 \text{ instead of } n, \text{ then propagate borrow}
\]
Final algorithm

```plaintext
while (i > 0) do
  i ← i - 1;
  xp ← C.incr xp (-1);
  let xd = C.incr xp mdn in
  let xp1 = xp[1] in
  if [@extraction:unlikely] (x1 = dh && xp1 = dl) then ...
  else begin
    let xp0 = xp[0] in
    (ql, x1, x0) ← div3by2_inv x1 xp1 xp0 dh dl v;
    let cy = wmpn_submul_1 xd y (sy - 2) ql in
    let cy1 = if (x0 < cy) then 1 else 0 in
    x0 ← sub_mod x0 cy;
    let cy2 = if (x1 < cy1) then 1 else 0 in
    x1 ← sub_mod x1 cy1;
    xp[0] ← x0;
    if [@extraction:unlikely] (cy2 ≠ 0) then begin (* cy2 = 1 *)
      let c = wmpn_add_n_in_place xd y (sy - 1) in
      x1 ← add_mod x1 (add_mod dh c);
      ql ← ql - 1;
    end;
    qp ← C.incr qp (-1);
    qp[0] ← ql;
  end;
done;
```
Final algorithm

while (i > 0) do
 i ← i - 1;
 xp ← C.incr xp (-1);
 let xd = C.incr xp mdn in
 let xp1 = xp[1] in
 if [@extraction:unlikely] (x1 = dh && xp1 = dl) then ...
 else begin
 let xp0 = xp[0] in
 (ql, x1, x0) ← div3by2_inv x1 xp1 xp0 dh dl v;
 let cy = wmpn_submul_1 xd y (sy - 2) ql in
 let cy1 = if (x0 < cy) then 1 else 0 in
 x0 ← sub_mod x0 cy;
 let cy2 = if (x1 < cy1) then 1 else 0 in
 x1 ← sub_mod x1 cy1;
 xp[0] ← x0;
 if [@extraction:unlikely] (cy2 ≠ 0) then begin (* cy2 = 1 *)
 let c = wmpn_add_n_in_place xd y (sy - 1) in
 x1 ← add_mod x1 (add_mod dh c);
 ql ← ql - 1;
 end;
 qp ← C.incr qp (-1);
 qp[0] ← ql;
 end;
done;
Final algorithm

```plaintext
while (i > 0) do
    i ← i - 1;
    xp ← C.incr xp (-1);
    let xd = C.incr xp mdn in
    let xp1 = xp[1] in
    if [@extraction:unlikely] (x1 = dh && xp1 = dl) then ...
    else begin
        let xp0 = xp[0] in
        (ql, x1, x0) ← div3by2_inv x1 xp1 xp0 dh dl v;
        let cy = wmpn_submul_1 xd y (sy - 2) ql in
        let cy1 = if (x0 < cy) then 1 else 0 in
        x0 ← sub_mod x0 cy;
        let cy2 = if (x1 < cy1) then 1 else 0 in
        x1 ← sub_mod x1 cy1;
        xp[0] ← x0;
        if [@extraction:unlikely] (cy2 ≠ 0) then begin (* cy2 = 1 *)
            let c = wmpn_add_n_in_place xd y (sy - 1) in
            x1 ← add_mod x1 (add_mod dh c);
            ql ← ql - 1;
        end;
        qp ← C.incr qp (-1);
        qp[0] ← ql;
    end;
done;
```

3-by-2 division

Shortened long subtraction

Proof effort

div3by2 inv: 1kloc
long division: 2kloc
Final algorithm

```plaintext
while (i > 0) do
    i ← i - 1;
    xp ← C.incr xp (-1);
    let xd = C.incr xp mdn in
    let xp1 = xp[1] in
    if [@extraction:unlikely] (x1 = dh && xp1 = dl) then ...
    else begin
        let xp0 = xp[0] in
        (ql, x1, x0) ← div3by2_inv x1 xp1 xp0 dh dl v;
        let cy = wmpn_submul_1 xd y (sy - 2) ql in
        let cy1 = if (x0 < cy) then 1 else 0 in
        x0 ← sub_mod x0 cy;
        let cy2 = if (x1 < cy1) then 1 else 0 in
        x1 ← sub_mod x1 cy1;
        xp[0] ← x0;
        if [@extraction:unlikely] (cy2 ≠ 0) then begin (* cy2 = 1 *)
            let c = wmpn_add_n_in_place xd y (sy - 1) in
            x1 ← add_mod x1 (add_mod dh c);
            ql ← ql - 1;
        end;
        qp ← C.incr qp (-1);
        qp[0] ← ql;
    end;
done;
```

3-by-2 division
Shortened long subtraction
One-step adjustment
Final algorithm

```
while (i > 0) do
    i ← i - 1;
    xp ← C.incr xp (-1);
    let xd = C.incr xp mdn in
    let xp1 = xp[1] in
    if [@extraction:unlikely] (x1 = dh && xp1 = dl) then ...
    else begin
        let xp0 = xp[0] in
        (ql, x1, x0) ← div3by2_inv x1 xp1 xp0 dh dl v;
        let cy = wmpn_submul_1 xd y (sy - 2) ql in
        let cy1 = if (x0 < cy) then 1 else 0 in
        x0 ← sub_mod x0 cy;
        let cy2 = if (x1 < cy1) then 1 else 0 in
        x1 ← sub_mod x1 cy1;
        xp[0] ← x0;
        if [@extraction:unlikely] (cy2 ≠ 0) then begin (* cy2 = 1 *)
            let c = wmpn_add_n_in_place xd y (sy - 1) in
            x1 ← add_mod x1 (add_mod dh c);
            ql ← ql - 1;
        end;
        qp ← C.incr qp (-1);
        qp[0] ← ql;
    end;
done;
```
Introduction

Memory model and extraction

An algorithm: long division

WhyMP

Conclusion, perspectives
WhyMP

Objectives

- Verified C library
- Compatible with GMP
- Performances comparable to GMP, for numbers up to a certain size
- Contains a large subset of algorithms from the mpn and mpz layers
WhyMP

Objectives
- Verified C library
- Compatible with GMP
- Performances comparable to GMP, for numbers up to a certain size
- Contains a large subset of algorithms from the \texttt{mpn} and \texttt{mpz} layers

Challenges
- Understand the algorithms
- Preserve GMP’s implementation tricks
Noteworthy algorithms

Toom-Cook multiplication

- Divide-and-conquer multiplication algorithm in $O(n^k)$, $k \approx 1.58$
- Two mutually recursive variants:
 - Toom-2: split each operand in 2 parts (\sim Karatsuba)
 - Toom-2.5: split large operand in 3 parts and small in 2
- Main challenge: aliasing
Noteworthy algorithms

Toom-Cook multiplication

- Divide-and-conquer multiplication algorithm in $O(n^k)$, $k \approx 1.58$
- Two mutually recursive variants:
 - Toom-2: split each operand in 2 parts (≈ Karatsuba)
 - Toom-2.5: split large operand in 3 parts and small in 2
- Main challenge: aliasing

Modular exponentiation

- Square-and-multiply exponentiation algorithm
- Montgomery reduction optimization: no division in the main loop
- Main challenge: formalization of mathematical concepts
Noteworthy algorithms

Square root of a 64-bit integer

- Hand-coded fixed-point arithmetic
- Newton iteration
- Converges in two steps for all inputs
- Main challenge: modeling fixed-point arithmetic
Noteworthy algorithms

Square root of a 64-bit integer
- Hand-coded fixed-point arithmetic
- Newton iteration
- Converges in two steps for all inputs
- Main challenge: modeling fixed-point arithmetic

mpz layer
- Wrapper around the mpn layer, keeps track of number signs and sizes
- User-facing layer of GMP
- Not much arithmetic, but challenging aliasing combinatorics
- Main challenge: custom memory model required
Proof effort

- 22000 lines of WhyML code
 - 8000 of programs
 - 14000 of spec and assertions
- almost only automated provers
- total proof replay time: ~ 1 hr
- extracted C code: ~ 5000 lines
- ~ 100 functions, 50 of which are part of GMP’s API

<table>
<thead>
<tr>
<th>Function</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>1000</td>
</tr>
<tr>
<td>subtraction</td>
<td>1000</td>
</tr>
<tr>
<td>mul (naïve)</td>
<td>700</td>
</tr>
<tr>
<td>mul (Toom)</td>
<td>2400</td>
</tr>
<tr>
<td>division</td>
<td>4500</td>
</tr>
<tr>
<td>helper lemmas</td>
<td>300</td>
</tr>
<tr>
<td>reflection</td>
<td>1700</td>
</tr>
<tr>
<td>shifts</td>
<td>1000</td>
</tr>
<tr>
<td>square root</td>
<td>1600</td>
</tr>
<tr>
<td>modular exponentiation</td>
<td>1700</td>
</tr>
<tr>
<td>util</td>
<td>200</td>
</tr>
<tr>
<td>base conversions</td>
<td>2000</td>
</tr>
<tr>
<td>mpz</td>
<td>3600</td>
</tr>
</tbody>
</table>
Trusted code base

- Axioms, WhyML model of C
- Why3 verification condition computation
- Automated theorem provers
- Compilation from WhyML to C
- Handwritten arithmetic primitives
Arithmetic primitives

GMP uses handcoded assembly primitives:

- for basic operations:
 - $64 \times 64 \rightarrow 128$ bit multiplication
 - 128 by 64 bit division
- for critical large integer routines:
 - same-size addition
 - n-by-1 multiplication
Arithmetic primitives

GMP uses handcoded assembly primitives:

- for basic operations:
 - $64 \times 64 \rightarrow 128$ bit multiplication
 - 128 by 64 bit division
- for critical large integer routines:
 - same-size addition
 - n-by-1 multiplication

Options for WhyMP

- Trust the assembly primitives \Rightarrow should we? which ones?
- Verified 64-bit C primitives \Rightarrow much slower
- Compromise: handcoded C basic ops using 128-bit compiler support
Comparison with GMP ($n \times n$ multiplication)

![Comparison with GMP ($n \times n$ multiplication)](chart.png)
Comparison with GMP ($n \times n$ multiplication)

<table>
<thead>
<tr>
<th>n (limbs)</th>
<th>Mini-GMP</th>
<th>WhyMP without 128-bit ops</th>
<th>GMP without assembly</th>
<th>WhyMP</th>
<th>GMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{0}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison with GMP ($n \times n$ multiplication)

![Comparison with GMP](image)

- **Polynomial multiplication**:
 - **Toom_22**
 - **Toom_33**

- **Time (µs)** vs **n (limbs)**
 - **Mini-GMP**
 - **WhyMP without 128-bit ops**
 - **GMP without assembly**
 - **WhyMP**
 - **WhyMP with assembly**
 - **GMP**

The graph shows the competitive time for different algorithms as a function of the number of limbs (n). The algorithms are compared in terms of their efficiency, with a focus on the time complexity for polynomial multiplication.
1 Introduction

2 Memory model and extraction

3 An algorithm: long division

4 WhyMP

5 Conclusion, perspectives
Verification of C programs with Why3

Contributions

- Memory model of the C language
- Straightforward extraction to C
- Works on more than GMP! (Contiki’s ring buffer, cursors...)

⇒ Idiomatic, correct-by-construction C programs verified with Why3

Perspectives

- Memory model improvements:
 - support for C stack allocation
 - better alias handling
- Formalization of the correctness of the extraction mechanism
WhyMP

- Compatible with GMP (50 exported functions)
- Reasonable performance
- Formally verified! \Rightarrow minor bug found in GMP
- Preserves most of GMP’s implementation tricks

What remains to be done

- Exhaustivity: implement missing operations
- Cryptography functions, number theory functions
- Assembly code verification

https://gitlab.inria.fr/why3/whymp