Joint use of SysML and Reo to specify and verify CPS components

Perla Tannoury, Samir Chouali, and Ahmed Hammad

FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, France
Contexte : CPS

- Cyber-Physical Systems (CPS):
 - Collection of software and physical components.
 - Complex interaction between components.
CPS examples

Copyright © Dr. Sandip Ray 2021.

Copyright © Yong-Woon Hwang and Im-Yeong Lee 2020.
Objectif

How can we correctly model CPS?
CPS: Challenges

- Heterogeneity
- Interoperability
- Modeling difficulties
- Criticality
Outline

1. CPS context, examples
2. Objectif
3. CPS challenges
4. How to effectively model CPS?
5. How to enhance CPS interoperability and critical verification?
6. Contributions
 ○ Creating SysReo
 ○ CPS specification with SysReo
 ○ CPS verification with SysReo
7. Conclusion and future work
How can we effectively model CPS heterogeneous components for stakeholder comprehension, aligning with system requirements, architecture, and behavior?
Phase 1: Modeling CPS with SysML

- **System Modeling Language (SysML):**
 - OMG Standard.
 - Widely used in industries.
 - Model both the logical and physical components of a CPS.
 - Structured CPS modeling, covering requirements, architecture, and behavior (RD, BDD, IBD, SD, etc.).
Phase 1: SysML drawbacks

- **SysML drawbacks:**
 - Semi-formal language without the capability for formal verification of critical CPS.
 - Limited in accurately modeling complex behaviors (protocols) and component coordination in a CPS.
 - Limited in achieving full interoperability among CPS components.
How can we ensure **seamless interoperability** and verify **critical** requirements in CPS through effective modeling of **behaviors** and **coordination protocols**?
Phase 2: Modeling CPS with Reo

- **Reo coordination language:**
 - Exogenous Protocols: Captures explicitly system protocols.
 - Graphical notation: Enhances SysML models through Reo connectors or circuits.
 - Ordered Data Exchange: Enforces constraints on data exchange among components.
 - Formal semantics: Enables formal verification of CPS properties.
Phase 2: Reo drawbacks

- **Reo drawbacks:**
 - Challenging for Stakeholders: Formal semantics, hard to grasp, leading to potential compatibility issues and increased effort.
 - Limited Adoption and Support: Fewer resources, tools, and community support compared to widely adopted SysML.
Solution to CPS challenges

- Heterogeneity
- Modeling difficulties
- Interoperability
- Criticality

SysML

Reo

CPS challenges

SysReo

"Joint use of SysML and Reo to specify and verify the compatibility of CPS components"
Why SysReo?

- Explicit Protocol Modeling
- Holistic Design Approach
- Critical CPS Verification
- Stakeholder-Friendly

"Joint use of SysML and Reo to specify and verify the compatibility of CPS components"
How to model a CPS with **SysReo**?
1) Specification process: SysReo
1) Specification process: SysReo
Extending SysML with Reo:

Perla Tannoury
“Joint use of SysML and Reo to specify and verify the compatibility of CPS components”
1) Specification process: SysReo

SysML IBD vs Reo IBD:

(a) IBD of CBTC

(a) Reo IBD of CBTC

Perla Tannoury

“Joint use of SysML and Reo to specify and verify the compatibility of CPS components”
SysReo in a nutshell

- **SysReo**
 - Capture various aspects of CPS at all design levels (ExtBDD).
 - Explicitly characterize message flow and their properties (Reo IBD).

- Previous work focuses on SysML alone or Reo alone, but never on both.

- **SysReo** offers detailed and precise communication between components by explicitly modeling their architectures and interaction protocols.
2) Verification Process

1) Specification Process

- Specification: SysReo model
 - 1) Requirement Diagram
 - 2.1) ExtBDD, 2.2) Reo IBD
 - 3) SysReo SD

2) Verification Process

- Correct CPS
 - True verification results

- 4.1) Translation through algorithm
 - Formal Model: CA

- 4.2) Translation through property formulas
 - Formal Model: LTL

- 5) Verification: Veeofy Tool
Why SysReo SD?

- **SysReo SD:**
 - Extends SysML SD with Reo notation enhancing message exchange, coordination, and synchronization.
 - Enables explicit protocol specification.
 - Offers a comprehensive method for specifying protocols in system behavior and coordination.
 - Particularly advantageous for capturing communication flow and coordination in a single diagram.
2) Verification process: SysReo SD

Step 1: Extending SysML SD with Reo Sequencer

A) SysML SD

B) SysReo SD

Protocol: Reo sequencer

Step 2: Translating SysReo SD to CA

How to transform SysReo SD to Constraint automata?
2) Verification Process: Constraint Automata (CA)

- **Definition CA:**
 - A constraint automaton \(B = (S, S_0, N, \delta) \) is composed of:
 - \(S \): set of states (or locations).
 - \(S_0 \): initial state where \(S_0 \in S \).
 - \(N \): set of port names.
 - \(\delta \): transition relation \(\delta \subseteq S \times 2^N \times DC \times S \), where \(DC \) is the set of Data Constraints (DC) over a finite data domain Data.

- Formal representation and specification of Reo.
- Captures interactions and data flow in coordination models.
- Input for verification tools, e.g., Vereofy.
2) Verification Process Example using Vereofy

Rq1: The “SB” must constantly send temperature data to the “RTU” component using “sendTempData” message.

Rq2: The “RTU” shall respond to the “SB” component with an “ack” message.

Rq1: LTL: \[G("\{A\} \& \#A == 1\} \rightarrow X(" state == S1 " \& " sendTempData == 1\}) \]

Rq2: LTL: \[G("\{W\} \& \#W==1\})-\rightarrow X("state==S0" \& "ack==1")\]
Conclusion and Future Work

- **SysReo Introduction:**
 - A novel language for CPS modeling.
 - Ensuring CPS architecture, inner structure and interaction protocols.

- **Main contribution:**
 - Introducing SysReo SD that captures CPS behavior using exogenous protocol coordination.
 - Translating SysReo SD into Constraint Automata (CA).
 - Using Vereofy tool that verifies LTL properties for design compliance.

- **Future Work:**
 - Considering real-time notations in coordination and behavior of CPS components.
 - Exploring SysReo in Digital Twins (DT) for virtual interactions and behaviors.
Thank you!

Perla Tannoury

Université de Bourgogne Franche-comté (UBFC)

perla.tannoury@femto-st.fr